The responses of early foliar litter humification to reduced snow cover during winter in an alpine forest

Author:

Ni Xiangyin1,Yang Wanqin1,Li Han1,Xu Liya1,He Jie1,Tan Bo1,Wu Fuzhong1

Affiliation:

1. Key laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Ni, X., Yang, W., Li, H., Xu, L., He, J., Tan, B. and Wu, F. 2014. The responses of early foliar litter humification to reduced snow cover during winter in an alpine forest. Can. J. Soil Sci. 94: 453–461. Snow cover can be reduced by ongoing winter warming in alpine biomes, affecting foliar litter humification, but few reports are available. To quantitatively clarify how early foliar litter humification responds to reduced snow cover in winter, a field litterbag experiment was conducted in an alpine forest in southwestern China. Mass losses, ΔlogK, E4/E6, degrees of humification and humification rates of six typical local foliar litters were investigated at the snow formation, snow cover and snow melt stage under snowpack levels differing in depth (deep snowpack, medium snowpack, thin snowpack, no snowpack) from November 2012 to April 2013. The results indicated that 14–15% of willow (Salix paraplesia), 8–9% of fir (Abies faxoniana), 6–7% of birch (Betula albo-sinensis), 5–8% of cypress (Sabina saltuaria), larch (Larix mastersiana) and azalea (Rhododendron lapponicum) foliar litter was humified, which was about 50% of what decomposed during the first winter. Moreover, the early humification of foliar litter (except for fir and birch) responded positively to the reduced snow cover, but mass loss exhibited negative responses. Such results suggest that reduced snow cover in winter would increase soil carbon or other material sequestration in the scenario of climate change.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3