Nutrient loss from Saskatchewan cropland and pasture in spring snowmelt runoff

Author:

Cade-Menun Barbara J.1,Bell Gordon2,Baker-Ismail Samar13,Fouli Ymène1,Hodder Kyle4,McMartin Dena W.3,Perez-Valdivia Cesar3,Wu Kangsheng5

Affiliation:

1. Agriculture and Agri-Food Canada, Semiarid Prairie Agricultural Research Centre (SPARC), Box 1030, Swift Current, Saskatchewan, Canada S9H 3X2

2. Agriculture and Agri-Food Canada, Agri-Environmental Services Branch, 408 – 1800 Hamilton St., Regina, Saskatchewan, Canada S4P 4L2

3. Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada S4S 0A2

4. Department of Geography, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada S4S 0A2

5. Saskatchewan Watershed Authority 420-2365 Albert St., Regina, Saskatchewan, Canada S4P 4K1

Abstract

Cade-Menun, B. J., Bell, G., Baker-Ismail, S., Fouli, Y., Hodder, K., McMartin, D. W., Perez-Valdivia, C. and Wu, K. 2013. Nutrient loss from Saskatchewan cropland and pasture in spring snowmelt runoff. Can. J. Soil Sci. 93: 445–458. To develop appropriate beneficial management practices (BMPs) for a watershed, it is essential to quantify the nutrients lost from agricultural fields and to identify the mechanisms of nutrient transport. To determine appropriate BMPs for a watershed in southeastern Saskatchewan, nutrient concentrations were measured in spring 2010 in snowmelt runoff from fertilized annual cropland (zero till) and perennial tame pastures. The majority of nutrient loss was in dissolved form, rather than as particulates. Significantly more nitrogen (N) was lost from pastures as dissolved ammonium than from cropland, while significantly more dissolved organic N was lost from croplands. Although there were no significant differences in total phosphorus (P) loss, there were significantly higher concentrations of dissolved reactive P in runoff from cropland, and significantly higher particulate P in runoff from pastures. Total carbon (C) in runoff was higher from cropland, due mainly to significantly higher dissolved organic C concentrations. Runoff from cropland contained significantly higher concentrations of dissolved potassium and sulfur, reflecting the fertilization of cropland fields with these nutrients. These preliminary results demonstrate that nutrients may be transported from agricultural lands by different mechanisms (e.g., in dissolved versus particulate forms) as a function of cropping system, requiring the development of specific types of BMPs to best control nutrient losses.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3