Effects of waterlogging on the yield and growth of summer maize under field conditions

Author:

Ren Baizhao1,Zhang Jiwang1,Li Xia1,Fan Xia1,Dong Shuting1,Liu Peng1,Zhao Bin1

Affiliation:

1. State Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China

Abstract

Ren, B., Zhang, J., Li, X., Fan, X., Dong, S., Liu, P. and Zhao, B. 2014. Effects of waterlogging on the yield and growth of summer maize under field conditions. Can. J. Plant Sci. 94: 23–31. A field experiment was performed to study the effects of waterlogging for different durations (3 and 6 d) on the yield and growth of summer maize at the three-leaf stage (V3), six-leaf stage (V6), and the 10th day after the tasseling stage (10VT). The results after 2 yr indicated that maize development and grain yield responses to waterlogging depended on both stress severity (intensity and duration) and different growth stage. Yield decreased significantly with an increased waterlogging duration during V3 and V6. The yields of maize hybrid Denghai 605 (DH605) in treatments V3-3, V3-6, V6-3, V6-6, 10VT-3, and 10VT-6 were 23, 32, 20, 24, 8, and 18% lower than those of the control (CK), respectively; Yields of Zhengdan 958 (ZD958) were lower by 21, 35, 15, 33, 7, and 12%, respectively. Waterlogging also affected the growth and development of summer maize. Ear characteristics (grains per ear and 1000-grain weight) and plant morphology (plant height, ear height, and leaf area index) decreased, whereas the bald tip length increased significantly. The maximum grain-filling rate decreased under waterlogging; furthermore, the dry matter accumulation decreased and dry matter distribution proportions of the stem and leaf increased. However, the distribution proportion of grain decreased. Maize was most susceptible to waterlogging damage at V3, followed by V6 and 10VT, with damage increasing with increasing waterlogging duration.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3