Time-course accumulation of flavonoids in hydroponically grown Achillea millefolium L.

Author:

Pedneault Karine1,Dorais Martine12,Léonhart Sébastien1,Angers Paul3,Gosselin André1

Affiliation:

1. Horticultural Research Centre, Laval University, Quebec City, Quebec, Canada G1V 0A6

2. Agriculture and Agri-Food Canada, Envirotron Building, Laval University, Quebec City, Quebec, Canada G1V 0A6

3. Department of Food Science and Nutrition, Laval University, Quebec City, Quebec, Canada G1V 0A6

Abstract

Pedneault, K., Dorais, M., Léonhart, S., Angers, P. and Gosselin, A. 2014. Time-course accumulation of flavonoids in hydroponically grown Achillea millefolium L. Can. J. Plant. Sci. 94: 383–395. In recent decades, the use of plant-based medicines as health products has increased considerably all over the world. As greenhouse hydroponic culture allows standardized cultural methods to be used, it may be valuable for reducing the risks associated with harvesting medicinal plants from the wild, such as species dissemination, species misidentification, adulteration, and non-hygienic handling, while allowing the production of high yields of clean, standardized biomass year-round. To evaluate the potential of hydroponic culture for medicinal plant production, the present study investigated the accumulation patterns of apigenin, luteolin, apigenin glycosides, and the chlorogenic acid 5-caffeoylquinic acid in the plant organs of A. millefolium at five phenological stages from 35 to 102 d after sowing, and drew a comparison with outdoor-grown plants at 122 d after sowing. The results showed two flavonoid accumulation peaks: one at the early growth stage (35 d after sowing) and one at early flowering (87 d after sowing). At 87 d after sowing, most of the apigenin glycosides were concentrated in the roots (3.80% wt/wt, dry weight basis), whereas free apigenin and luteolin were located mainly in the flower heads (1.25 and 0.86% wt/wt, dry weight basis, respectively). Early flowering was the best harvesting stage for optimal flavonoid production in terms of active compounds per plant and kilograms of plant biomass per cultivated area. At 122 d after sowing (phenological stage 4), the outdoor-grown plants were nine times smaller than the early flowering plants (87 d after sowing) from the hydroponic system and had a root-tissue apigenin glycoside level that was five times lower than that of the hydroponically grown plants. In conclusion, the use of a hydroponic growing system reduced by 29% the time required to reach phenological stage 4, which corresponds to maximum plant bioactive concentration, in comparison with field production. Therefore, hydroponic culture represents an effective alternative to outdoor production and can result in standardized, high-quality medicinal plant biomass with potential flavonoid yields approximating 515 mg per plant.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3