Timothy yield and nutritive value with a three-harvest system under the projected future climate in Canada

Author:

Jing Qi1,Bélanger Gilles1,Qian Budong2,Baron Vern3

Affiliation:

1. Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Québec, Québec, Canada G1V 2J3

2. Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, Canada K1A 0C6

3. Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada T4L 1W1

Abstract

Jing, Q., Bélanger, G., Qian, B. and Baron, V. 2014. Timothy yield and nutritive value with a three-harvest system under the projected future climate in Canada. Can. J. Plant Sci. 94: 213–222. Timothy (Phleum pratense L.) is harvested twice annually in Canada but with projected climate change, an additional harvest may be possible. Our objective was to evaluate the impact on timothy dry matter (DM) yield and key nutritive value attributes of shifting from a two- to a three-harvest system under projected future climate conditions at 10 sites across Canada. Future climate scenarios were generated with a stochastic weather generator (AAFC-WG) using two global climate models under the forcing of two Intergovernmental Panel on Climate Change emission scenarios and, then, used by the CATIMO (Canadian Timothy Model) grass model to simulate DM yield and key nutritive value attributes. Under future climate scenarios (2040–2069), the additional harvest and the resulting three-harvest system are expected to increase annual DM yield (+0.46 to +2.47 Mg DM ha−1) compared with a two-harvest system across Canada but the yield increment will on average be greater in eastern Canada (1.88 Mg DM ha−1) and Agassiz (2.02 Mg DM ha−1) than in the prairie provinces of Canada (0.84 Mg DM ha−1). The DM yield of the first harvest in a three-harvest system is expected to be less than in the two-harvest system, while that of the second harvest would be greater. Decreases in average neutral detergent fibre (NDF) concentration (−19 g kg−1 DM) and digestibility (dNDF, −5 g kg−1 NDF) are also expected with the three-harvest system under future conditions. Our results indicate that timothy will take advantage of projected climate change, through taking a third harvest, thereby increasing annual DM production.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3