Effects of long-term simulated microgravity on tomato seedlings

Author:

Xu Dongqian12,Guo Shuangsheng3,Liu Min4

Affiliation:

1. School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China

2. School of Biological Science and Engineering, Hebei University of Economic and Business, Shijiazhuang 050061, Hebei Province, China

3. Science and Technology of Human Factors Engineering Laboratory, China Astronaut Research and Training Center, Beijing 100094, China

4. Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Xu, D., Guo, S. and Liu, M. 2014. Effects of long-term simulated microgravity on tomato seedlings. Can. J. Plant Sci. 94: 273–280. Whether plants can adapt to a long-term microgravity environment is crucial to their reproduction in bioregenerative life-support systems in space. This research investigated the effects of simulated microgravity on Lycopersivon esculentum Mill. (cv. Dwarf Red-bell). Several indicators, namely germination ratio, percentage of cell membrane damage, malondialdehyde content (MDA), superoxide anion ([Formula: see text]) content, and mininucleolus, were observed 10, 20, 30, and 40 d after planting (DAP). Simulated microgravity [random positioning machine (RPM) treatment] barely had any effect on germination ratio, but it increased MDA, an index indicating membrane lipid peroxidation. Random positioning machine-treated samples had significantly higher [Formula: see text] content until 16 DAP, but these differences ceased after 21 DAP. Simulated microgravity damaged cell membranes, and the damage severity was positively related to the duration of the simulated microgravity treatment. Mininucleoli were more common in RPM-treated root tips than in the 1×g ones. In conclusion, simulated microgravity seriously disturbed tomato seedling growth by damaging cell membrane integrity, causing the accumulation of hazardous substances, and affecting the cell nucleus structure.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3