Logistic model analysis of winter wheat growth on China's Loess Plateau

Author:

Xiangxiang Wang12,Quanjiu Wang13,Jun Fan12,Lijun Su4,Xinlei Shen5

Affiliation:

1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, Shaanxi, P. R. China

2. Graduate University of Chinese Academy of Science, 100039, Beijing, P. R. China

3. Institute of Water Resource Research, Xian University of Technology, 710048, Xian, P. R. China

4. School of Sciences, Xian University of Technology, 710054, Xian, P. R. China

5. Luohe Soil and Fertilizer Extension Service, 462300, Luohe, P. R. China

Abstract

Xiangxiang, W., Quanjiu, W., Jun, F., Lijun, S. and Xinlei, S. 2014. Logistic model analysis of winter wheat growth on China's Loess Plateau. Can. J. Plant Sci. 94: 1471–1479. The leaf area index (LAI) and above-ground biomass are closely related to crop growth status and yields. Therefore, analysis of their variation and development of a mathematical model for their prediction can provide a theoretical basis for further research. This paper presents a new equation for logistic pattern that calculates above-ground biomass and LAI for different irrigation treatments independent of growing degree days (GDD) and plant height. The model root mean square of error (RMSE) for the LAI was from 0.25 to 1.36, and for above-ground biomass it was from 0.49 to 1.34. The r2 values for the model's output under the single irrigation, double irrigation, triple irrigation, and quadruple irrigation treatments were 0.98, 0.87, 0.96, 0.98 and 0.99, respectively. For above-ground biomass they were 0.96, 0.97, 0.99, 0.97, and 0.97, respectively. The relative error for LAI ranged from 0.026 to 15.2%. For above-ground biomass, the Re ranged from 5.78 to 8.79%. The results gave good agreement between the estimated values and the measured values. The Logistic model was good at estimating the LAI and the above-ground biomass from the plant height.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3