Estimation of decay constants for crop residues measured over 15 years in conventional and reduced tillage systems in a coarse-textured soil in southern Ontario

Author:

Beyaert Ron1,Paul Voroney R.2

Affiliation:

1. Agriculture and Agri-Food Canada, Delhi, Ontario, Canada N4B 2W5

2. University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Beyaert, R. P. and Voroney, R. P. 2011. Estimation of decay constants for crops residues measured over 15 years in conventional and reduced tillage systems in a coarse-textured soil in southern Ontario. Can. J. Soil Sci. 91: 985–995. Crop residues are the primary means of sustaining soil organic matter levels in agricultural soils. This study was undertaken to determine the effects of tillage practices on the rate of decomposition of crop residues over a 15-yr period under field conditions in southern Ontario. Microplots were amended with14C-labelled above-ground residues of five annual agricultural crops: corn (Zea mays L.), soybean (Glycine max L.), winter wheat (Triticum aestivum L.), winter rye (Secale cereale L.) and tobacco (Nicotiana tobaccum L.). The crop residues were added to the soil immediately following harvest during the 1990 growing season using a simulated conventional mouldboard plough–disc management (CT) or conservation tillage management (RT), and the amounts of crop residues remaining were measured periodically. The rate of decomposition of the labile C was positively correlated to the levels of hot-water soluble C and N content and negatively correlated to the C:N ratio and hemicellulose concentration of the residues. Decomposition of the residue C was greater under CT during the initial phase of decomposition, indicating that the incorporated residues were exposed to a more favourable environment for microbial activity compared with surface-applied residues. Kinetic analysis of residue decomposition showed that residues managed under CT had a larger labile component and faster rate of decomposition and a smaller resistant component with a slower decomposition rate than RT. Comparisons of models describing the decomposition of combined crops/tillage practices did not describe the decomposition process as well as models for individual crop/tillage combinations.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3