Quantifying carbon sequestration in a minimum tillage crop rotation study in semiarid southwestern Saskatchewan

Author:

Campbell C. A.,VandenBygaart A. J.,Zentner R. P.,McConkey B. G.,Smith W.,Lemke R.,Grant B.,Jefferson P. G.

Abstract

Scientists and the agricultural community require methods of quantifying C sequestration in soils. This is important in assessing the impact of crop management practices on emission of greenhouse gases and for “C trading”. Using simulation models may be a more effective method of quantification as compared with in situ measurements. A 17-yr crop rotation experiment being conducted on a medium-textured Orthic Brown Chernozem at Swift Current, Saskatchewan, in which soil organic C (SOC) was being monitored periodically, was used to assess the effect on C sequestration of cropping frequency, wheat class, legume green manure (LGM), flexible cropping based on available water, and regrassing of crop land. Prior to the study, the experimental site had been cropped to fallow-wheat (F-W) for the previous 60 yr. Crop management in this experiment involved minimum tillage, snow trapping, and N + P fertilization based on soil tests. Three models [Century, the Introductory C Balance model (ICBM), and the Campbell model] were tested for their effectiveness in simulating SOC trends. Because growing season precipitation was average to above average, yields, and thus C inputs from residue, were also above average, and consequently SOC increased in most systems for the first 10 yr before reaching a new steady state. SOC gains (kg ha-1 yr-1) in the 0- to 15-cm depth in 17 yr were directly proportional to cropping frequency (F-W-W = 135, F-W-W-W = 332, and Cont W = 441); LGM-W-W gained SOC at a much higher rate than F-W-W (329 vs. 135 kg ha-1 yr-1 ); Canada Western Red Spring (CWRS) wheat (Triticum aestivum L.), although it yielded 26% less than Canada Prairie Spring (CPS) wheat, gained SOC at a higher rate than CPS wheat (135 vs. 0 kg ha-1 yr-1). Further, 2 yr of conventionally-tilled fallow in 17 yr (flexible system) markedly suppressed SOC gain by 46% compared with Cont W (441 vs. 236 kg ha-1 yr-1). There was a 282 kg ha-1 yr-1 gain in SOC under crested wheatgrass (Agropyron cristatum L.) (CWG) but most of this gain occurred in the last 7 yr. Though having their inherent weaknesses, the ICBM and Campbell models performed equally well in simulating SOC trends (r2 = 0.55**), but Century was less effective (r2 = 0.21*), in part because of its limited ability to simulate yields. Because C input, and thus yield, is one of the main factors influencing SOC gains, and since measured yields are used in the ICBM and Campbell models, while simulated yields are used by Century, the ICBM and Campbell models have an advantage over the Century model in this comparison. Efficiencies of conversion of input C to SOC increased with cropping frequency, and were higher for LGM-W-W than for F-W-W, and for systems with CWRS wheat rather than CPS wheat. Efficiency of conversion was 8% for F-W-W, 15% for LGM-W-W and 21% for Cont W. Key words: ICBM model, Century model, Campbell model, C sequestration, legume green manure, regrassing

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3