Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil biochemical quality

Author:

Monreal C. M.,Bergstrom D. W.

Abstract

We identified complexes of soil nutrient mineralising enzymes expressing the influence of land use, tillage system and texture on soil biochemical quality in production systems involving corn, soybean, wheat and oat. The activities of dehydrogenase, β-glucosidase, L-glutaminase, urease, alkaline phosphatase, and arylsulphatase were measured in 760 soil samples taken from the A horizon of uncultivated land and cultivated Gleysols and Luvisols cropped with conventional tillage (CT) and reduced tillage (RT) systems between 1994 and 1996.Discriminant analysis showed that an enzymatic decomposition factor captured 96% of the total dispersion in soil enzyme activity responding to type of land use and tillage system. The soil enzymes β-glucosidase, dehydrogenase and L-glutaminase contributed most to this factor and were sensitive indicators for assessing the health of microbial mineralisation processes of the C and N cycles. Two biochemical factors expressed the influence of texture on soil enzyme activity. The first, a soil organic C and N decomposition factor captured 68% of the dispersion in enzyme activities was influenced mostly by β-glucosidase and dehydrogenase. The second factor, which captured 32% of the dispersion in enzyme activity, was influenced mostly by arylsulphatase and denotes the effects of texture on a pool generally considered to be extracellular in nature. Cluster analysis helped define seven levels of soil enzyme activity ranging from very low (mostly in soils cropped with CT) to very high [mostly in uncultivated (UC) land and soils cropped with RT]. The identification of key enzymatic factors and the definition of seven levels of enzyme activity serve as a basis for developing quantitative systems monitoring the impact of crop production systems on soil enzymes having specific ecological functions in agricultural land. Key words: Soil enzymes, tillage, land use, texture, dehydrogenase, β-glucosidase, glutaminase

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3