Photosynthetic responses of muskmelon (Cucumis melo L.) to photon flux density, leaf temperature and CO2 concentration

Author:

Chen N.,Gan Y.,Wang G.

Abstract

Two cultivars (Huanghemi and Elizabeth) of muskmelon (Cucumis melo L.) were evaluated to determine the effect of photon flux density (PFD), leaf temperature, and CO,2 concentration on the net photosynthetic rate (Pn). The cultivars were evaluated under open field and solar-heated greenhouse conditions in northwest China. The Pn increased as the PFD increased, and then the rate of increase in Pn declined for Huanghemi and decreased for Elizabeth. Elizabeth registered 22 µmol m-2 s-1 for light compensation and 1127 µmol m-2 s-1 for light saturation, which, respectively, were 50 and 70% of those required by Huanghemi. The Pn increased with increasing leaf temperatures in the range of 9.8 to 50.8°C. The optimum temperature for photosynthesis was 35.3°C for muskmelon grown in open field, 2.4°C (7%) greater than that for muskmelon grown in the greenhouse. At optimal temperatures, the field-grown muskmelon had the Pn of 19.8 µmol m-2 s-1, 30% greater than that for the greenhouse-grown muskmelon. Both cultivars responded positively to CO2 concentrations of below the CO2 saturation points, whereas Huanghemi exhibited greater (51%) Pn and higher (49%) carboxylation efficiency than Elizabeth at optimal CO2 level. The two cultivars exhibited greater photosynthesis in open field than when grown in solar-heated greenhouses, while Elizabeth performed better than Huanghemi when light conditions were poor. Selective use of cultivars with low requirements for light and temperatures will enhance the photosynthesis and productivity of muskmelon grown in solar-heated greenhouses of northwest China. Key words: Light compensation, light saturation, photon flux density, transpiration

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3