Slope position and subsoiling effects on soil water and spring wheat yield

Author:

McConkey B. G.,Ulrich D. J.,Dyck F. B.

Abstract

A study was conducted on a 4-m-high ridge in southwestern Saskatchewan to determine the relationship of slope position with the soil water regime and spring wheat (Triticumaestivum L.) production and to determine if those relationships were altered by subsoiling. In all years, available soil water in the spring to 120 cm increased significantly with distance upslope. This pattern was attributed to residual subsoil water in the rooting zone that had not been used by previous crops in a long-term crop-fallow rotation. After 3 yr of annual spring wheat production, soil water to 1.2 m at all slope positions approximately equalled the water content wilting point (4.0 MPa) water content, showing this residual water had been largely consumed. Apparent use of soil water between seeding and harvest at the upper slope positions was equal to or greater than that at the lower slope positions. Over-winter soil water conservation, using tall (≥ 30-cm-high) wheat stubble for snow trapping, at the upper slope positions was equal to or greater than that at the lower slope positions. In the non-drought years of 1987 and 1989, wheat yields and crop water use efficiency increased significantly with distance downslope. Since these slope effects were not related to water use or availability, they were attributed to higher soil productivity, probably related to more historical net erosion with distance upslope. During the drought year of 1988, wheat yields and water use efficiency were greatest at the upslope positions, but these results were confounded by uneven crop emergence. Subsoiling to 35 cm or deeper increased the amount and depth of infiltration of water in years with near-average November–April precipitation. Subsoiling had little effect on wheat yields and no effect on crop water use. Key words: Landscape, wheat, productivity, soil moisture

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3