Evaluation of two self-incompatibility alleles in three summer rape (Brassica napus L.) cultivars by UV fluorescence microscopy, seed set and outcrossing rates

Author:

Lewis L. J.,Woods D. L.,Klein-Gebbinck H. W.

Abstract

S-alleles W1 and T2 and an incompletely dominant white petal character were introgressed into the self-compatible (SC) summer rape (Brassica napus L. ssp. oleifera {Metzg.}) cultivars Global, Topas and Westar. The derived self-incompatible (SI) lines were evaluated for strength of incompatibility by ultraviolet fluorescence of pollen tubes, and by seed set. Pollen tube and seed set analyses showed the W1 and T2 alleles were strongly, moderately and weakly expressed in Topas, Global and Westar, respectively. Seed set data showed a significant difference between SI lines, but not between S-alleles, or between homozygous or heterozygous lines from the same SI cultivar. SI cultivar yellow petal (wild type) lines were field pollinated with SC white petal lines. Seed collected from the SI cultivars were evaluated for proportion of outcrossed progeny by recording the frequency of yellow petal and cream petal plants, which were the result of self- and cross-pollination, respectively. The proportion of outcrossed progeny (i.e., outcrossing rates) ranged from 23% to 79%. Topas SI lines had significantly higher outcrossing rates than Global SI lines, which corresponded to SI line seed set data. Environment, S-allele selection and genotype significantly affected outcrossing rates. Key words: Brassica napus, sporophytic incompatibility, S-allele, outcrossing rate

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3