Crop rotation and soil N amendment effects on maize production in eastern Canada

Author:

Ma B. L.,Ying J.,Dwyer L. M.,Gregorich E. G.,Morrison M. J.

Abstract

Relying less on fertilizer N and more on crop residual and biological N2 fixation by legume crops has been suggested as an effective way to meet the challenge of maximizing economic return while minimizing environmental pollution. A field study was conducted on a Brandon loam soil (Orthic Humic Gleysol) to determine the effects of crop rotation and N amendments on grain yield, crop growth, N uptake and use efficiency (NUE) of maize ( Zea mays L.) and fertilizer replacement values of legume. The rotations included maize in annual rotation with soybean [Glycine max (L.) Merrill], alfalfa ( Medicago sativa L.) or continuous maize. The soil N amendments included no amendment, NH4NO3 at 100 kg N ha-1, stockpiled or rotted dairy manure at 50 Mg ha-1 (wet weight). Averaged across 4 yr, increases in maize grain yield, total plant N uptake, and NUE ranged from 13 to 35% in the maize-soybean and maize-alfalfa rotations compared to continuous maize monoculture. During the study, total dry matter production was 15 to 35% higher and crop growth rate was 13 to 23% higher for maize following alfalfa than for continuous maize monoculture. The effect of legumes on the subsequent growth of maize (i.e., total dry matter production a n d crop growth rate) was most apparent during the grain filling period. Total maize dry matter production was similar up to silking stage for all three rotation systems; however, the difference in total dry matter between maize monoculture and maize in rotation with legume continued to increase after this stage so that the greatest differences were observed at physiological maturity. Grain yield was 19% higher in the 100 kg N ha-1 treatment and 23% higher in the repeated manure amendment than in the unfertilized treatment. Fertilizer N replacement values were on average, 68 kg ha-1 for soybean and 133 kg ha-1 for alfalfa. Our results indicate that maize in annual rotation with legume crops could increase the maize yields by as much as 20% and reduce the amount of chemical fertilizer N by as much as 180 kg N ha-1. The effect of legume preceding crop on maize dry matter production and N uptake is expressed mostly in the later stages of crop growth in this mid- to short-growing- season region. Key words: Rotation, Zea mays, dry matter accumulation, crop growth rate, manure, nitrogen use efficiency

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3