Broadening genetic diversity inBrassica napuscanola: Development of canola-quality springB. napusfromB. napus×B. oleraceavar.alboglabrainterspecific crosses

Author:

Rahman Habibur1,Bennett Rick A.12,Séguin-Swartz Ginette3

Affiliation:

1. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5

2. Agrisoma Biosciences Inc., Saskatoon, Saskatchewan, Canada S7N 0W9

3. Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

Rahman, H., Bennett, R. A. and Séguin-Swartz, G. 2015. Broadening genetic diversity in Brassica napus canola: Development of canola-quality spring B. napus from B. napus × B. oleracea var. alboglabra interspecific crosses. Can. J. Plant Sci. 95: 29–41. The narrow genetic base in spring Brassica napus (AACC) canola is a limitation for continued improvement of this crop. This research focused on broadening of genetic diversity in spring canola by using B. oleracea (CC). Seeds of B. oleracea contain high levels of erucic acid and glucosinolates, which are undesired in canola. Therefore, inheritance of these traits and the prospect of developing spring canola with allelic diversity introgressed from B. oleracea were investigated in B. napus×B. oleracea interspecific progenies. Zero-erucic plants in F2generation occurred at a lower frequency than expected based on segregation involving only the C-genome erucic acid alleles. Selection in F2to F3focused on zero erucic acid, while focus in later generation was for low glucosinolate and B. napus plants. In the F6, 31% zero-erucic families had low glucosinolate content. Flow cytometry analysis of the F8families showed no significant difference from the B. napus parent. Genetic diversity analysis by using simple sequence repeat markers from the C-genome chromosomes showed that the F8families received up to 54% alleles from B. oleracea. The results demonstrate the feasibility of enriching genetic diversity in B. napus canola by using B. oleracea.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3