Linkage map construction and quantitative trait loci (QTL) mapping using intermated vs. selfed recombinant inbred maize line (Zea mays L.)

Author:

Khanal R.11,Navabi A.11,Lukens L.11

Affiliation:

1. Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Rd. Guelph, Ontario, Canada N1G 2W1

Abstract

Khanal, R., Navabi, A. and Lukens, L. 2015. Linkage map construction and quantitative trait loci (QTL) mapping using intermated vs. selfed recombinant inbred maize line (Zea mays L.). Can. J. Plant Sci. 95: 1133–1144. Intermating of individuals in an F2 population increases genetic recombination between markers, which is useful for linkage map construction and quantitative trait loci (QTL) mapping. The objectives of this study were to compare the linkage maps and precision of QTL detection in an intermated recombinant inbred line (IRIL) population and a selfed recombinant inbred line (RIL) population. Both, IRIL and RIL, populations were developed from Zea mays inbred lines CG60 and CG102. The populations were grown in two environments to evaluate traits, and inbred lines from each population were genotyped with SSR and SNP markers for linkage map construction and QTL identification. In addition, we simulated RIL and IRIL populations from two inbred parents to compare the precision of QTL detection between simulated RIL and IRIL populations. In the empirical study, the linkage map was longer in RIL as compared with IRIL, and the average QTL support interval was reduced by 1.37-fold in the IRIL population compared with the RIL population. We detected 16 QTL for flowering time, plant height, leaf number, and stay green in at least one recombinant inbred line population. Two out of 16 QTL were shared between two recombinant inbred line populations. In the simulation study, the QTL support interval was reduced by 1.66-fold in the IRIL population as compared with the RIL population and linked QTL were identified more frequently in IRIL population as compared with RIL population. This study supports the utility of intermated RIL populations for precise QTL mapping.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3