Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria

Author:

Manici L. M.1,Kelderer M.2,Caputo F.1,Nicoletti F.1,De Luca Picione F.1,Topp A. R.2

Affiliation:

1. Council for Agricultural Research and Economics (CRA), CRA-CIN via di Corticella 133. 40128 Bologna, Italy, Bologna, Italy

2. Laimburg Research Centre for Agriculture and Forest, 39051 Vadena, Ora (BZ), Italy

Abstract

Manici, L. M., Kelderer, M., Caputo, F., Nicoletti, F., De Luca Picione, F. and Topp A. R. 2015. Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria. Can. J. Plant Sci. 95: 947–958. Replant disease of fruit tree orchards has a multifactorial etiology, mainly due to the decline in soil biodiversity along with an increase in root rot pathogens, which can be principally countered with appropriate cropping practices. Therefore, a study on the impact of cover crops on plant health of young fruit trees in long-term orchards was performed. Bioassays were performed over two consecutive growing cycles using soil from a multigeneration apple orchard affected by replant disease. First, a cycle was performed with three cover crops (alfalfa, barley, marigold) and apple rootstock plantlets; at the end, the above-ground part of the plant was removed and root residues left in the soil. In the second cycle, an apple orchard planting was simulated upon the first experimental design. Changes of diversity and composition of root inhabiting fungi and rhizospheric bacteria were evaluated as well as apple plant growth response to the pre-plant treatments. Results suggest that one cycle with alternate plants was sufficient to induce changes at the rhizosphere level, despite soil microbial resilience caused by the same long-term soil management. Rhizospheric bacteria were generally affected by plant genotype. Findings suggest that all three different cover crops can harbor almost all fungal species that colonize apple in replanted orchards (Fusarium spp., Pythum spp., binucleate Rhizoctonia sp., Cylindrocarpon-like-fungi and a several nonpathogenic saprophytic fungi named “other”), but their infection frequency varied according to the host plant. A single pre-plant break treatment did not overall differ significantly in plant growth of subsequent apple tree; however, break with marigold, which increased abundance of nonpathogenic root inhabiting fungi more than other cover crops, gave significantly higher plant growth than obtained after barley. This study provides evidence about cover-crop potential to increase soil diversity in long-term permanent cropping systems and to manipulate root colonizing fungi involved in crop health.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3