Effects of soil temperature and moisture on soil respiration in barley and fallow plots

Author:

Akinremi O. O.,McGinn S. M.,McLean H. D. J.

Abstract

Agricultural systems are sources and sinks for carbon and to quantify the net effect of these systems on atmospheric CO2 concentration, the amounts of carbon fixed in primary production and that respired by the soil must be known. The objectives of our study were (1) to quantify the amount of soil respiration from fallow and barley plots during the growing season; and (2) to determine the relationship between these fluxes and soil temperature and moisture. This study was conducted on field plots measuring 200 by 200 m with one plot planted to barley (Hordeum vulgare L.) while the other plot was in fallow. Two automated chambers were permanently installed in the fallow plot and three in the barley plot at the start of the growing season. When CO2 fluxes were integrated over a 24-h period, the daily soil respiration under fallow ranged from a low of 1.6 g CO2 m−2 d−1 on a dry day to a high of 8.3 g CO2 m−2 d−1 on a wet day. The corresponding values for barley were 3.3 and 18.5 g CO2 m−2 d−1 in 1994. Similar values were obtained in 1996 and, on average, daily soil respiration under barley was twice of that under fallow. The integrated daily CO2 flux under fallow was strongly related to daily soil moisture and mean soil temperature with moisture alone accounting for 76 to 80% of the variation in CO2 flux. While good relationships were obtained between soil moisture and CO2 flux under fallow, the relationship under barley was not as good. The CO2 fluxes, measured eight times per day, displayed a diurnal pattern similar to that of soil temperature; however, there was no consistent quantitative relationship between these 3-hourly fluxes and temperature. A poor relationship was obtained when the fluxes during several days were related to soil temperature as soil moisture confounded flux-temperature relationship. Under the semi-arid conditions of southern Alberta, moisture is the main parameter controlling soil respiration during the growing season. Key words: Soil respiration, soil moisture, soil temperature, CO2 flux, chamber measurements, diurnal CO2 flux

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3