Author:
Akinremi O. O.,McGinn S. M.,McLean H. D. J.
Abstract
Agricultural systems are sources and sinks for carbon and to quantify the net effect of these systems on atmospheric CO2 concentration, the amounts of carbon fixed in primary production and that respired by the soil must be known. The objectives of our study were (1) to quantify the amount of soil respiration from fallow and barley plots during the growing season; and (2) to determine the relationship between these fluxes and soil temperature and moisture. This study was conducted on field plots measuring 200 by 200 m with one plot planted to barley (Hordeum vulgare L.) while the other plot was in fallow. Two automated chambers were permanently installed in the fallow plot and three in the barley plot at the start of the growing season. When CO2 fluxes were integrated over a 24-h period, the daily soil respiration under fallow ranged from a low of 1.6 g CO2 m−2 d−1 on a dry day to a high of 8.3 g CO2 m−2 d−1 on a wet day. The corresponding values for barley were 3.3 and 18.5 g CO2 m−2 d−1 in 1994. Similar values were obtained in 1996 and, on average, daily soil respiration under barley was twice of that under fallow. The integrated daily CO2 flux under fallow was strongly related to daily soil moisture and mean soil temperature with moisture alone accounting for 76 to 80% of the variation in CO2 flux. While good relationships were obtained between soil moisture and CO2 flux under fallow, the relationship under barley was not as good. The CO2 fluxes, measured eight times per day, displayed a diurnal pattern similar to that of soil temperature; however, there was no consistent quantitative relationship between these 3-hourly fluxes and temperature. A poor relationship was obtained when the fluxes during several days were related to soil temperature as soil moisture confounded flux-temperature relationship. Under the semi-arid conditions of southern Alberta, moisture is the main parameter controlling soil respiration during the growing season. Key words: Soil respiration, soil moisture, soil temperature, CO2 flux, chamber measurements, diurnal CO2 flux
Publisher
Canadian Science Publishing
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献