EPIC estimates of soil water, nitrogen and carbon under semiarid temperate conditions

Author:

Roloff G.,jong R. de,Campbell C. A.,Zentner R. P.,Benson V. M.

Abstract

The Environmental Policy Integrated Climate (EPIC) model is an important support tool for environmental management. Previous tests of the model have determined that it is suitable for long-term yield estimation, but it is less precise in assessing annual yield variability. To determine the reasons for the discrepancies between estimated and measured yields, we tested the ability of EPIC version 5300 to predict soil water and soil nitrogen dynamics, using data from a long-term spring wheat (Triticum aestivum L.) rotation experiment in the semiarid prairie region of Canada. Potential evapotranspiration (PET) estimates varied among methods tested: Priestley-Taylor and Penman-Monteith methods resulted in PET means that were about twice those obtained with the Hargreaves and Baier-Robertson methods. The higher PET means were associated with an excessive estimation of net radiation. We used the Baier-Robertson method to generate the other estimates reported herein. EPIC generally overestimated total soil water, but it still allowed clear differentiation among rotation phases and times of the year, and provided adequate estimates of water during the critical shot-blade stage. Water estimates by soil layer were also generally overpredicted, especially at depths from 0.15 to 0.60 m, but we were able to differentiate among rotation phases and times of the year. Precision of these latter estimates was generally low, accounting at most for 27% of the variability, and varied by soil layer, rotation phase and time of the year. Nitrate-N estimates tended to be lower than measured values, especially at depths below 0.3 m and during vegetative growth phases. However, the estimates also allowed us to distinguish among the rotation phases and times of the year. Total N and organic C were satisfactorily estimated by EPIC. In general, EPIC provided adequate long-term estimates of the environmental quality indicators tested. Key words: Environmental quality, environmental modelling, sustainability, spring wheat, fallow, potential evapotranspiration methods

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3