In vitro ruminal digestion of anthocyanidin-containing alfalfa transformed with the maize Lc regulatory gene

Author:

Wang Y.,Frutos P.,Gruber M. Y.,Ray H.,McAllister T. A.

Abstract

In vitro ruminal digestion was conducted on novel “purple-green” alfalfa forage that accumulated anthocyanidin and proanthocyanidins through the expression of a maize bHLH anthocyanidin regulatory gene (Lc). The Lc-transgenic genotypes were compared with parental (non-transformed, NT) alfalfa in their in vitro ruminal fermentation, dry matter (DM) and N disappearances, and DM degradability. The transgenic genotypes expressed the Lc gene at different levels when grown under high light conditions, resulting in anthocyanidin contents as high as 136 g g-1 DM. Lc genotypes had lower true DM disappearance than NT alfalfa at 0, 4 and 12 h of incubation, but not at 24 or 48 h. Compared with NT, Lc-transgenic genotypes had a lower content of rapidly soluble DM, but a similar content and rate of degradation of the slowly degradable DM fraction, and a similar lag time for digestion. True disappearance of N was lower for Lc- transgenic than NT alfalfa at the initiation of the incubation. The solubility of both DM and N were negatively correlated with the concentration of anthocyanidins measured in the forage. The results indicate that Lc-transformation reduced the initial rate, but not the extent of DM and N digestion of alfalfa in the rumen. These properties could improve the utilization of protein and possibly reduce the risk of bloat in ruminants consuming fresh alfalfa. However, further increasing the amount of anthocyanidins (or proanthocyanidins) produced in the forage may be required to make this a viable strategy for improved protein utilization and bloat prevention. Key words: Alfalfa, anthocyanidins, Lc-transformation, nitrogen, ruminal digestion

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3