EFFECT OF Penicillium bilaji ON THE SOLUBILITY AND UPTAKE OF P AND MICRONUTRIENTS FROM SOIL BY WHEAT

Author:

KUCEY R. M. N.

Abstract

Penicillium bilaji has previously been shown to increase wheat growth and P uptake by solubilizing phosphates under soil conditions. Laboratory experiments were conducted to determine if P. bilaji was able to solubilize inorganic compounds of copper, iron and zinc. Greenhouse and field experiments were also conducted to determine if P. bilaji had an effect on uptake of copper, iron and zinc by wheat. Under pure culture conditions, P. bilaji was able to solubilize cuprous and cupric oxide, cupric carbonate and zinc metal and, to a lesser extent, ferrous and ferric oxides and pyrite. The soil studies showed increased wheat dry matter production and seed and P yields in response to P. bilaji inoculation, which was related to increased incidence of P-solubilizing fungi in the wheat rhizospheres. Penicillium-inoculated plants contained greater quantities of Cu and Zn under greenhouse conditions and more Cu and Fe under field conditions than treatments not receiving Penicillium inoculum. Cu and Fe concentrations in the plants, in most cases, were not affected; however, Zn concentrations were increased by P. bilaji under greenhouse conditions. It was concluded that P. bilaji is able to cause solubilization of relatively insoluble forms of Cu, Fe and Zn. It did not directly affect the uptake of Fe and Cu by wheat in the soils used in these experiments, but may increase the uptake of Zn by plants. Key words: Penicillium bilaji, rock phosphate, copper, zinc, iron, wheat

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3