Soil and alfalfa response after amelioration of subsoil acidity in a fine sandy loam Podzol in Prince Edward Island

Author:

Carter M. R.,Richards J. E.

Abstract

Subsoils in Prince Edward Island have poor chemical and often physical quality for root growth that may present a barrier to development of alfalfa (Medicago sativa L.). This study was conducted to characterise the response or benefit, on soil properties and alfalfa growth, of chemical amelioration and loosening of the subsoil. In 1987, the following three treatments were imposed on an acidic, fine sandy loam, Humo-Ferric Podzol: control (no subsoiling or lime), subsoiling alone, and subsoiling plus lime (5 Mg ha−1 dry CaCO3) mixed into the subsoil. The subsoiler was a Wye Double-Digger, a combined plough and rotary cultivator that facilitated the mixing of lime into the soil over the 230–480 mm depth. Management of the 0–200 mm soil depth was the same for all treatments. Growth of alfalfa and change in soil properties were monitored over time. In 2 of 4 yr (1991–1994), alfalfa yield was significantly (P < 0.05) increased by the subsoil plus lime treatment, compared with subsoiling alone or the control. Yield increases were related to periods of low growing season precipitation. Subsoil amelioration increased alfalfa root penetration (by 90 mm) and reduced leaf Mn concentration. Over an 8-yr period (1987–1994), soil exchangeable Ca was increased over fourfold, while exchangeable Al was decreased threefold in the ameliorated subsoil, compared with the control. Soil pH (in water) was increased from 4.8 to near 6.0. There was some evidence that liming of the topsoil improved the subsoil chemistry over time. Bulk density and penetrometer resistance contours, measured over time, indicated that the soil loosening effect was sustained throughout the soil profile over the duration of the study. Soil biological properties were not changed by the subsoil treatments. Key words: Subsoil acidity, podzol, lime, deep placement, alfalfa (Medicago sativa L.), cool-humid climate

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3