Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows overwintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles

Author:

Bernier J. N.1,Undi M.2,Plaizier J. C.2,Wittenberg K. M.2,Donohoe G. R.3,Ominski K. H.2

Affiliation:

1. Manitoba Agriculture, Food, and Rural Initiatives, Brandon, Manitoba, Canada R7A 5Y3

2. Department of Animal Science and National Centre for Livestock and the Environment (NCLE), University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

3. Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Abstract

Bernier, J. N., Undi, M., Plaizier, J. C., Wittenberg, K. M., Donohoe, G. R. and Ominski, K. H. 2012. Impact of prolonged cold exposure on dry matter intake and enteric methane emissions of beef cows overwintered on low-quality forage diets with and without supplemented wheat and corn dried distillers’ grain with solubles. Can. J. Anim. Sci. 92: 493–500. This study was conducted to determine the impact of prolonged cold exposure on dry matter intake (DMI) and enteric methane (CH4) emissions of overwintering beef cows consuming low-quality forage with and without supplemented protein in the form of dried distillers’ grain with solubles (DDGS). The study was carried out with 30 mature, dry, open beef cows (663±52.9 kg) that were fed a low-quality (deficient CP, 6.0% CP) forage (control), low-quality forage supplemented with 10% DDGS (sufficient CP, 8.7% CP; DDGS10) or 20% DDGS (excess CP, 11.6% CP; DDGS20). Carrying out the study from October through February allowed assessment under thermal neutral and prolonged cold conditions typical of the prairie region of Canada (Manitoba, Alberta and Saskatchewan). Average minimum and maximum daily temperatures were 2.7 and 13.8°C in the thermal neutral period, and –23.5 and −11.0°C in the prolonged cold period, respectively. When no protein supplements were offered, cows exposed to prolonged cold consumed less (P=0.01) forage than when exposed to thermal neutral conditions. Enteric CH4 emissions, when measured as litres per day, were not influenced (P>0.05) by dietary protein supplementation, averaging 285.6±11.71, 311.9±11.49 and 282.6±13.02 L d−1 for cows fed control, DDGS10, and DDGS20 diets, respectively. When expressed as a percentage of energy consumed, cows consuming low-quality forage supplemented with 20% DDGS produced 18.5% less (P=0.01) enteric CH4 relative to cows consuming the low-quality forage only, with emissions of 5.3±0.38 and 6.5±0.33% GEI, respectively. Mature beef cows maintained at the same physiological status and dietary regime produced 26.8% less (P=0.001) enteric CH4 (7.1±0.30 vs. 5.2±0.26% GEI) under prolonged cold as compared with thermal neutral conditions. Based on these results, enteric CH4 emissions for the Canadian cow herd that is overwintered outdoors may be overestimated using current International Panel on Climate Change (IPCC) methodology.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3