Long-term effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan

Author:

Campbell C. A.,McConkey B. G.,Zentner R. P.,Selles F.,Curtin D.

Abstract

Soil organic matter contributes to the productivity and physical well-being of soils. An 11-yr study was conducted on a clay soil in the Brown soil zone in southwestern Saskatchewan to determine the influence of tillage and cropping frequency on soil organic C and total N content. Carbon and N behaved in a similar manner. Cropping frequency did not affect soil organic C or total N content, but soil C and N were greater under no-tillage (NT) than under mechanically tilled continuous wheat (Triticum aestivum L.) (Cont W) and fallow-wheat (F-W) rotations. Effects were apparent in the 0– to 7.5– and 7.5– to 15-cm depths. Over the 11-yr period, F-W (minimum tillage) gained no additional C; Cont W (conventional tillage) gained 2 t C ha−1, and both Cont W (NT) and F-W (NT) gained 5 t C ha−1. Changes in organic C and N were greatest in the final 4 yr of the experiment when crop residue production was greatest. Using data from two similar experiments conducted during the same period on soils differing in texture, we demonstrated that C gains were directly related to clay content of the soils. Thus, when attempting to estimate C storage in soils, we must consider both residue input and soil clay content. Key words: Organic C, total N, organic matter, soil texture, bulk density

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3