Simulation of soil moisture and other components of the hydrological cycle using a water budget approach

Author:

Akinremi O. O.,McGinn S. M.,Barr A. G.

Abstract

Accurate simulation of soil moisture content at any time of the year is important to agriculture in dry regions due to the vital role soil moisture plays in crop production. In certain applications such as drought monitoring, other components of the hydrologic cycle such as runoff, snowmelt runoff, deep drainage and evaporative loss must also be accurately estimated. The goal of this study was to develop a model which accurately accounts for the major components of the hydrological cycle in order to simulate soil moisture content for drought monitoring and crop yield prediction. The versatile soil moisture budget (VSMB) was evaluated and modified to improve the prediction of soil moisture content runoff from rainfall and snowmelt, drainage of moisture out of the root zone and soil surface temperature. The modified components of the model were independently tested and validated using field and published data. The soil moisture output from our modified model correlated well with observed changes in soil moisture during the growing season under wheat, fallow and over the winter. The moisture content of the surface layer was simulated with greater accuracy than that of deeper layers. The soil moisture simulated by the modified model compares better with measured values than that simulated using the original version of the VSMB. The simulation of snow dynamics at Lethbridge, a chinook-dominated region, gave credibility to the snowmelt runoff predicted by the model. Key words: Soil moisture, modelling, runoff, evapotranspiration, snowmelt, Canadian prairies

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3