Influence of radiation and CO2 enrichment on whole plant net CO2 exchange in roses

Author:

Jiao J.,Tsujita M. J.,Grodzinski B.

Abstract

At three stages of flowering shoot development, varying the irradiance and CO2 levels had a similar effect on the whole-plant net CO2 exchange rate (NCER) of Samantha rose plants. At 22 °C, the NCER was saturated at 1000 μmol m−2 s−1 photosynthetically active radiation (PAR). The duration of the light period was also important in determining daily carbon (C) gain. When roses were exposed to a constant daily radiant energy dose of 17.6 μmol m−2 provided either as a 12-h irradiation interval at 410 μmol m−2 s−1 PAR or 24 h of irradiation at 204 μmol m−2 s−1 PAR, the plants exposed to 24 h of continuous irradiation at the lower photon flux density retained 80% more C. Under saturating irradiance, the net photosynthetic rate at an enriched (1000 μL L−1) CO2 level was almost double that at ambient (350 μL L−1) CO2. However, plants grown at ambient and enriched CO2 levels had similar whole-plant NCERs when compared at the same assay CO2 level. Under CO2 enrichment the flower stem was longer and thicker but the flower bud size at harvest was not significantly different to that of roses grown at the ambient CO2 level. Key words: CO2 enrichment, daily carbon gain, net CO2 exchange rate, radiation, Rosa hybrida

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3