Photoperiod response characteristics of alfalfa (Medicago sativa L.) cultivars

Author:

Major D. J.,Hanna M. R.,Beasley B. W.

Abstract

Ten cultivars of alfalfa (Medicago sativa L.) were exposed to low temperatures for varying times and to a series of photoperiods in controlled environment cabinets to determine vernalization and photoperiod responses. There was a reduction in time of 2–16 d from emergence to flowering for vernalization treatments. Vernalization treatments of less than 1 d or greater than 28 d had similar numbers of days from emergence to flowering. The photoperiod response characteristics included the basic vegetative phase (BVP), which is a juvenile phase that must be completed before the plant is responsive to photoperiod, the maximal optimal photoperiod (MOP), the photoperiod beyond which flowering occurs in a constant number of days, and photoperiod sensitivity, the number of days delay in flowering per hour increase in photoperiod. Anik and Vernal comprised a group with the longest BVP, 29.0 d; a group of six cultivars had a mean BVP of 27.6 d, and Maris Kabul and Saranac had the shortest BVP, 25.6 d. The MOP was greatest for Beaver (19 h), shortest for Vernal (17.7 h) and intermediate for the remaining cultivars (18.3 h). Alfalfa was confirmed as a long-day plant, because the time to flowering decreased as photoperiod was lengthened. This results in negative photoperiod sensitivity values. Anik, with a photoperiod sensitivity of −20.50 d h−1, was different from the rest of the cultivars, with a photoperiod sensitivity ranging from −8.51 to −5.08 d h−1. These results demonstrate that alfalfa photoperiod response is consistent with the general response observed for annual long-day species of crop plants and suggest that legume breeders may be able to incorporate specific photoperiod characteristics into alfalfa cultivars in order to optimize harvest dates. Key words: Daylength, development, flowering

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3