Changes in plant density dependence of leaf photosynthesis of maize (Zea mays L.) hybrids, 1959 to 1988

Author:

Dwyer L. M.,Stewart D. W.,Tollenaar M.

Abstract

Understanding of the physiological basis for increased maize (Zea mays L.) yields over the last three decades may contribute to future genetic improvement. Recent maize production systems have tended to increase plant densities to maximize grain yield. The objective of this field study was to determine if there were changes in the response of leaf photosynthetic rates to increasing plant densities in four hybrids grown in Ontario from 1959 to 1989. The four hybrids, numbered from the oldest to most recent hybrid ((1) Pride 5, (2) United 106, (3) Pioneer 3978 and (4) Pioneer 3902) were grown at 20 000, 80 000 and 130 000 plants ha−1. Leaf photosynthetic response to irradiance (PRI) and crop growth rate (CGR) were measured near silking and during late grainfilling, leaf area index (LAI) was measured near silking and total grain yield was measured after maturity. The LAIs of recent hybrids tended to be larger than for old hybrids at comparable plant densities. Leaf photosynthetic rates declined in all hybrids at increasing densities, but the decline occurred at lower LAIs in the older hybrids. As a result, despite the higher LAIs of recent hybrids, they showed an equal or higher PRI at all plant densities. The higher PRI of recent hybrids was correlated with higher CGRs and grain yields. These results suggest that increases in optimum plant density for grain and increases in yield may be attributable, in part, to higher PRI at elevated LAIs in recent hybrids. Key words: Leaf area index, plant density, leaf photosynthesis, Zea mays L.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3