Solute transport in sub-irrigated peat-based growing media

Author:

Boudreau J.,Caron J.,Elrick D.,Fortin J.,Gallichand J.

Abstract

New legislation to reduce the amount of fertilizer leached into the environment by horticultural growers and the need to implement water-saving irrigation systems require an understanding of salt build-up and of nutrient cycles in order to develop efficient water-use strategies for growers. Solute transport in growing media is central to this process, but has received little attention thus far. The objectives of this study were to determine how solutes behave in sub-irrigated growing media and to assess a solute transport model for these media. A steady state evaporation (upward water flow) experiment was carried out with three different growing media in packed columns in the laboratory. Bromide, potassium and copper concentrations were determined using in-column pore water solution samplers and by sectioning the columns at the end of the experiment to obtain concentration profiles. The Hydrus-1D model was fitted to the solution sampler data assuming non-linear Freundlich adsorption, and then used to obtain favorable predictions of the measured concentration profiles. Independent adsorption isotherm results from batch experiments were found to be inadequate when used to predict solute movement and the results indicate that the preferred approach is an in-column evaluation of the transport parameters.Key words: Solute transport, sub-irrigation, peat, growing media

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3