Crop performance on soils receiving annual papermill biosolid amendments with and without supplementary nitrogen

Author:

Price G. W.,Voroney R. P.,Chong C.

Abstract

Nitrogen availability is often a limiting factor for optimum crop growth on agricultural soils amended with papermill biosolids (PB). The objective of our study was to evaluate the effect on corn (Zea mays L.) and soybean (Glycine max L.) production of adding supplementary nitrogen fertilizer to soils amended with increasing rates of PB. Papermill biosolids were applied annually on four agricultural soils in southern Ontario, Canada. Treatments included three rates of PB (50, 100, and 150 Mg ha-1), combined with four levels of nitrogen fertilizer [crop recommended [CR], [CR] + 0.5 kg N Mg-1 PB, [CR] + 1.0 kg N Mg-1 PB, and [CR] + 1.5 kg N Mg-1 PB]. In addition, non-amended plots were also established receiving either (a) zero PB and zero nitrogen fertilizer or (b) zero PB and [CR] nitrogen fertilizer only. All the plots received the same treatment combinations, i.e., PB × N, each year for the duration of the study. In corn, [CR] nitrogen fertilizer was insufficient to satisfy plant growth and PB decomposition requirements. Supplementary nitrogen fertilizer at a rate of 1.0 kg N Mg-1 PB was generally required to maintain or increase corn grain production relative to the control plots receiving the [CR] nitrogen fertilizer only. Corn grain yield increases ranged from 1000 to 6000 kg ha-1 relative to the control at some of the research sites. The optimum rate of supplementary nitrogen fertilizer varied by soil texture (location) and year. In contrast, production of soybean did not require high supplementary nitrogen fertilizer, or in some cases any, in order to maintain or increase yields at most locations. Our study shows that nitrogen fertility management had a greater impact on yields in production systems planted to corn than soybeans while receiving annual PB amendments. No residual effects on corn yield or corn grain protein content were observed after PB amendments were stopped.Key words: Papermill biosolids, carbon:nitrogen ratio, corn, soybean, nitrogen fertilizer

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3