Acoustic non-destructive testing of UAS´s propellers during predeparture and post-flight checks

Author:

Soria Gomez Maria, ,Koschlik Ann-Kathrin,Arts Emy,Raddatz Florian,Wende Gerko, , , ,

Abstract

Unmanned Aerial System (UAS) activities have increased steeply in the last years, market research forecasts a continuous increase in the near future. The rapid growth of this industry, however, has outpaced the development of rules and systems to govern their use, as well as those to ensure a safe operation before, during and after flight. Maintenance, Repair and Overhaul (MRO) aspects will gain relevance as more and more UAS take to the sky. Rotary-wing UAS have 2 or more propellers, which are easily damaged during normal operation of the vehicle. The reduced thrust and increased vibration imply losing performance and setting the UAS structure under stress. With the propellers being the main source of sound of the propulsion system, we propose the use of acoustics to identify damaged propellers. Microphones placed off-board do neither disrupt UAS operation nor reduce the payload capacity. Furthermore, this method does not depend on a particular manufacturer or software. In this paper, we present a concept for the non-destructive testing of multi-copter propellers. The fault diagnosis aims at recognizing the difference in sound between damaged and undamaged propellers. This evaluation takes place before the UAS takes off the ground and after it lands, thus allowing to interrupt a possible dangerous mission or identifying damage occurred during operation. The vehicle is on the ground in an “idle state” where the propellers already spin, but not fast enough to lift it. This state is used for a first analysis of the sound of a single propeller and several propellers, as well as for the generation of data. Next, two approaches for the detection of damage are developed and their performance is evaluated: an analytical approach and a machine learning algorithm based on an autoencoder neural network....

Publisher

NDT.net GmbH & Co. KG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of an acoustic fault diagnosis system for UAV propeller blades;CEAS Aeronautical Journal;2024-07-12

2. Real-Time UAV Fault Detection and Classification Using Measurement Data from the PADRE Database;2024 IEEE/SICE International Symposium on System Integration (SII);2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3