Cadmium and copper transport in alluvial soils in the Brazilian semiarid region: column percolation and modeling

Author:

Barros Vitor Hugo de OliveiraORCID,Alves Adriana Thays AraújoORCID,Santos Severino Martins dosORCID,Coutinho Artur PaivaORCID,Lassabatere LaurentORCID,Gondim Manuella Virgínia SalgueiroORCID,Antonino Antonio Celso DantasORCID

Abstract

ABSTRACT Regarding the Brazilian textile industry, part of the northeast region stands out as the second-largest textile manufacturing hub in the country. Despite its importance, this industrial activity has been bringing relevant environmental concerns regarding the disposal of textile effluents, especially from industrial laundries. This waste contains many chemicals and among them are various types of heavy metals. To assess environmental risks associated with heavy metals, pollutant transfer needs to be investigated. This study evaluated the retention and mobility of heavy metals Cd and Cu in alluvial soil, through soil column tests. The up-flow column percolation tests were performed using a nonreactive tracer (KBr) at a concentration of 0.3 mol L -1 and injecting a metallic solution containing Cu and Cd at 100 and 60 mg L -1 , respectively. The injection flow rate was 0.75 mL min -1 . The hydro-dispersive parameters were obtained by modeling the observed breakthrough curves with the convection-dispersion equation (CDE) and the two-region model, also referred to as the MIM (Mobile-IMmobile waters) model. The transport parameters were obtained from the two-site model (TSS). All elution curves were fitted to the models with the CXTFIT 2.0 program. The Two-Site Sorption Model was the best for the case studied, with R 2 of 0.985 and 0.995 for Cu and Cd, respectively. The values of R were considerably higher than the unit, presenting an average of 2.138 for Cu and 1.907 for Cd. This indicates a delay of these contaminants when leaving the column, which is caused by the interaction of these chemical compounds with the soil. The values obtained for parameter D were 3.469 for Cu and 5.205 for Cd. Thus, the metals in this study present a risk of groundwater contamination for the local alluvial aquifers. The main reason for that is the physicochemical features of the soil, such as high sand content (85 %) and low OM content (2.1 %). The results also indicated greater retention and less mobility for Cu than for Cd, pointing to a greater risk for Cd.

Publisher

Revista Brasileira de Ciencia do Solo

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3