Nitrogen: from discovery, plant assimilation, sustainable usage to current enhanced efficiency fertilizers technologies – A review

Author:

Cassim Bruno Maia Abdo RahmenORCID,Lisboa Izaias PinheiroORCID,Besen Marcos RenanORCID,Otto RafaelORCID,Cantarella HeitorORCID,Inoue Tadeu TakeyoshiORCID,Batista Marcelo AugustoORCID

Abstract

ABSTRACT From 1913 onwards, the global situation changed from a scenario of nitrogen (N) scarcity to an abundance of ammonia (NH 3 ) produced synthetically via the Haber-Bosch process. Several N compounds have been synthesized since then, with urea becoming the main source of N, accounting for 55 % of current N consumption. However, N efficiency in agroecosystems is low and, normally, N recovery in cultivated plants is less than 50 %. This occurs because a large amount of reactive N is lost to the environment, inducing various forms of pollution, threatening human and environmental health, in addition to causing a negative economic impact on the farmer. The main processes responsible for low N efficiency are NH 3 volatilization, leaching, and N denitrification. Considering global NH 3 volatilization losses of 14 %, it can be assumed that up to 8.6 million Mg of urea are lost every year in the form of NH 3 . For each ton of NH 3 produced, 1.9 to 3.8 Mg of CO 2 is emitted into the atmosphere. Therefore, increasing N use efficiency (NUE) without compromising yield is a necessity and a challenge for crop improvement programs and current management systems, in addition to reducing greenhouse gas emissions. In this context, enhanced efficiency fertilizers (EEFs), which contain technologies that minimize the potential for nutrient losses compared to conventional sources, are an alternative to increasing the efficiency of nitrogen fertilization. Currently, EEFs are classified into three categories: stabilized, slow-release, and controlled-release. This study aims to understand the technologies used to produce EEFs and the factors that govern their availability to plants. This review covers the following topics: the discovery of N, N dynamics in the soil-atmosphere system, N assimilation in plants, strategies to increase NUE in agrosystems, NH 3 synthesis, NH 3 volatilization losses, N fertilizer technologies, the importance of characterization of EEFs, conventional nitrate or ammonium-based fertilizers to reduce gaseous losses of NH 3 and future prospects for the use of N fertilizers in agriculture.

Publisher

Revista Brasileira de Ciencia do Solo

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3