Person re-identification accuracy improvement by training a CNN with the new large joint dataset and re-rank

Author:

Bohush RykhardORCID,Ihnatsyeva SviatlanaORCID,Ablameyko SergeyORCID

Abstract

The paper is aimed to improve person re-identification accuracy in distributed video surveillance systems based on constructing a large joint image dataset of people for training convolutional neural networks (CNN). For this aim, an analysis of existing datasets is provided. Then, a new large joint dataset for person re-identification task is constructed that includes the existing public datasets CUHK02, CUHK03, Market, Duke, MSMT17 and PolReID. Testing for re-identification is performed for such frequently cited CNNs as ResNet-50, DenseNet121 and PCB. Re-identification accuracy is evaluated by using the main metrics Rank, mAP and mINP. The use of the new large joint dataset makes it possible to improve Rank1 mAP, mINP on all test sets. Re-ranking is used to further increase the re-identification accuracy. Presented results confirm the effectiveness of the proposed approach.

Publisher

Warsaw University of Life Sciences - SGGW Press

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Reference45 articles.

1. A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao. YOLOv4: Optimal speed and accuracy of object detection. arXiv, 2020. arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934.

2. S. Bąk and P. Carr. One-shot metric learning for person re-identification. In Proc. 2017 IEEE Conf. Computer Vision and Pattern Recognition (CVPR 2017), pages 1571-1580, Honolulu, HI, USA, 21-26 Jul 2017. https://doi.org/10.1109/CVPR.2017.171.

3. Y. Dai, J. Liu, Y. Sun, et al. IDM: An intermediate domain module for domain adaptive person re-ID. In Proc. 2021 IEEE/CVF Conf. Computer Vision (ICCV 2021), pages 11844-11854, Montreal, QC, Canada, 10-17 Oct. https://doi.org/10.1109/ICCV48922.2021.01165.

4. Y. Dai, Y. Sun, J. Liu, et al. Bridging the source-to-target gap for cross-domain person re-identification with intermediate domains. ArXiv, 2022. arXiv:2203.01682v1. https://doi.org/10.48550/arXiv.2203.01682.

5. Z. Ding, C. Ding, Z. Shao, and D. Tao. Semantically self-aligned network for text-to-image part-aware person re-identification. arXiv, 2021. arXiv:2107.12666v2. https://doi.org/10.48550/arXiv.2107.12666.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3