Assessment of the possibility of imitating experts' aesthetic judgments about the impact of knots on the attractiveness of furniture fronts made of pine wood

Author:

Gajowniczek KrzysztofORCID,Bator MarcinORCID,Śmietańska KatarzynaORCID,Górski JarosławORCID

Abstract

Our research aims to reconstruct expert preferences regarding the visual attractiveness of furniture fronts made of pine wood using machine learning algorithms. A numerical experiment was performed using five machine learning algorithms of various paradigms. To find the answer to the question of what determines the expert's decision, we determined the importance of variables for some machine learning models. For random forest and classification trees, it involves the overall reduction in node impurities resulting from variable splitting, while for neural networks it uses the Garson algorithm. Based on the numerical experiments we can conclude that the best results of expert decision reconstruction are provided by a neural network model. The expert's decision is better reconstructed for more beautiful images. The decision for nice images is made based on the best 4 or 5 variables, while for ugly images many more features are important. Prettier images and those for which the expert's decision is better reconstructed have fewer knots.

Publisher

Warsaw University of Life Sciences - SGGW Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3