The development of a generative approach for joint super-resolution image reconstruction from highly sparse raw data in the context of MR-PET imaging

Author:

Malczewski KrzysztofORCID

Abstract

The present study introduces a rapid and efficient approach for reconstructing high-resolution images in hybrid MRI-PET scanners. The application of sparsity, compressed sensing (CS), and super-resolution reconstruction (SRR) methodologies can significantly decrease the demands of data acquisition while concurrently attaining high-resolution output. G-guided generative multilevel networks for sparsely sampled MR-PET input are shown here. Compressed Sensing using conjugate symmetry and Partial Fourier methodology speeds up data collection over k-space sampling methods. GANs and k-space adjustments are used in this image domain technique. The employed methodology utilizes discrete preprocessing stages to effectively tackle the challenges associated with the deblurring, reducing motion artifacts, and denoising of layers. Initial trials offer contextual details and accelerate evaluations. Preliminary experiments provide contextual information and expedite assessments.

Publisher

Warsaw University of Life Sciences - SGGW Press

Reference49 articles.

1. G. Antoch and A. Bockisch. Combined PET/MRI: a new dimension in whole-body oncology imaging? European Journal of Nuclear Medicine and Molecular Imaging, 36(S1):113–120, 2008. https://doi.org/10.1007/s00259-008-0951-6.

2. M. P. Branco, A. Gaglianese, D. R. Glen, D. Hermes, Z. S. Saad, et al. ALICE: A tool for automatic localization of intra-cranial electrodes for clinical and high-density grids. Journal of Neuroscience Methods, 301:43-51, 2018. https://doi.org/10.1016/j.jneumeth.2017.10.022.

3. J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution with deep convolutional sufficient statistics. In: Proc. Int. Conf. Learning Representation (ICLR), 2015. Proceedings published in arXiv, https://doi.org/10.48550/arXiv.1412.7022.

4. H. Chang, D. Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In: Proc. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1. Washington, USA, 2004. https://doi.org/10.1109/CVPR.2004.1315043.

5. Y. Chen, F. Shi, A. G. Christodoulou, Y. Xie, Z. Zhou, et al. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-L'opez, and G. Fichtinger, eds., Proc. Conf. Medical Image Computing and Computer Assisted Intervention (MICCAI) 2018, vol. 11070 of Lecture Notes in Computer Sciences, pp. 91-99. Springer International Publishing, Granada, Spain, 16-20 Sep 2018. https://doi.org/10.1007/978-3-030-00928-1_11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3