Residual neural networks in single instance-driven identification of fungal pathogens

Author:

Wyszyński RafałORCID,Struniawski KarolORCID

Abstract

The rise in fungal infections, attributed to various factors including medical interventions and compromised immune systems, necessitates rapid and accurate identification methods. While traditional mycological diagnostics are time-consuming, machine learning offers a promising alternative. Nevertheless, the scarcity of well-curated datasets is a significant obstacle. To address this, a novel approach for identifying fungi in microscopic images using Residual Neural Networks and a subimage retrieval mechanism is proposed, with the final step involving the implementation of majority voting. The new method, applied to the Digital Images of Fungus Species database, surpassed the original patch-based classification using Convolutional Neural Networks, obtaining an overall classification accuracy of 94.7% compared to 82.4% with AlexNet FV SVM. The observed MCC metric exceeds 0.9, while AUC is near to one. This improvement is attributed to the optimization of hyperparameters and top layer architecture, as well as the effectiveness of the Mish activation function in ResNet-based architectures. Noteworthy, the proposed method achieved 100% accurate classification for images from 8 out of 9 classes after majority voting and is high resistant to overfitting, highlighting its potential for rapid and accurate fungal species identification in medical diagnostics and research.

Publisher

Warsaw University of Life Sciences - SGGW Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3