5G Channel Model for Frequencies 28 GHz, 73 GHz and 4 GHz with Influence of Temperature in Bandung

Author:

Rahayu Ismalia,Firdausi Ahmad

Abstract

The 5G channel model is the latest research on future cellular communication by considering the proposed millimeter wave (mmwave) as an enabling technology for the realization of connectivity in the 5G era. However, mmwave signal propagation suffers a high propagation loss to sensitivity to delay, resulting in a high probability and a low signal to signal ratio (SNR). This can take into account the potential for millimeter wave (mmwave) frequencies of 28, 73 and 4 GHz which are capable of meeting wide bandwidth requirements and data rates of up to Gbps for various scenarios such as Urban Microcell (UMi) and Urban Macrocell (UMa). The area used to conduct this research is in Indonesia because it is a tropical region that has high rainfall so that it can determine the effect that occurs when it is at maximum and minimum temperatures in each month. Therefore, to determine the characteristics of the 28, 73 and 4 GHz channels in the city of Bandung. This study discusses large-scale mmwave characteristics such as path loss, delay spread and power delay profile for line-of-sight (LOS) and non-line-of-sight (NLOS) cases and compares directional and omnidirectional propagation. In this study the Urban Microcell (UMi) scenario was carried out at a distance of 20 meters to 200 meters with a frequency of 28 GHz and 73 GHz, then for the Urban Macro cell (UMa) scenario at a frequency of 4 GHz with a distance of 50 meters to 500 meters.

Publisher

Universitas Mercu Buana

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atmospheric Influence on the Path Loss at High Frequencies for Deployment of 5G Cellular Communication Networks;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3