Muscle Protein Oxidation and Functionality: A Global View of a Once-Neglected Phenomenon

Author:

Xiong Youling L.1

Affiliation:

1. University of Kentucky Department of Animal and Food Sciences

Abstract

Muscle is a highly organized apparatus with a hierarchic microstructure that offers the protection of cellular components against reactive oxygen species (ROS). However, fresh meat immediately postmortem and meat undergoing processing become susceptible to oxidation due to physical disruption and the influx of molecular oxygen. Upon the activation by endogenous prooxidants, oxygen species are rapidly produced, and both myofibrillar and sarcoplasmic proteins become their primary targets. Direct ROS attack of amino acid sidechains and peptide backbone leads to protein conformational changes, conversion to carbonyl and thiol derivatives, and subsequent aggregation and polymerization. Interestingly, mild radical and nonradical oxidation enables orderly protein physicochemical changes, which explains why gels formed by ROS-modified myofibrillar protein have improved rheological properties and binding potential in comminuted meat and meat emulsions. The incorporation of phenolic and other multifunctional compounds promotes gel network formation, fat emulsification, and water immobilization; however, extensive protein modification induced by high levels of ROS impairs protein functionality. Once neglected but now recognized to be a natural occurrence, protein oxidation has drawn much interest and is being intensively studied within the international community of meat science. This review describes the history and evolution of muscle protein oxidation, the mechanism and functionality impact hereof, and innovative oxidant/antioxidant strategies to control and manipulate oxidation in the context of meat processing, storage, and quality. It is hoped that the review will stimulate in-depth discussion of scientific as well as industrial relevance and importance of protein oxidation and inspire robust international collaboration in addressing this underappreciated challenge.

Publisher

Iowa State University

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3