Rationale for the use of photocatalysis for natural and drinking water purification from pollutants of biological origin

Author:

Tsymbal D. O.1ORCID,Mazanik M. E.1ORCID

Affiliation:

1. Gomel State Medical University

Abstract

Objective. To evaluate the effectiveness of photocatalytic methods of oxidation of organic substances for the preparation of drinking water. To show the expediency of the use of the described method for the design of wastewater treatment facilities.Materials and methods. The oxidation degrees of 58 organic substances of various hazard classes were studied. The sampling frame was based on two characteristics: origin (biological and artificial) and the oxidation state stated in different sources.Results. A high efficiency of photocatalysis for the destruction of organic substances in wastewater from various industries has been shown: the degrees of oxidation range from 70 to 100 %.Conclusion. Photocatalysis can be used to design wastewater treatment facilities with a view to reducing the probability of biological pollution of natural waters intended for drinking water production.

Publisher

Gomel State Medical University

Reference41 articles.

1. The measurement and monitoring of water supply, sanitation and hygiene (WASH) affordability: a missing element of monitoring of Sustainable Development Goal (SDG) Targets 6.1 and 6.2. New York: United Nations Children’s Fund (UNICEF) and the World Health Organization, 2021. [date of access 2021 April 15]. Available from: Available from: https://washdata.org/sites/default/files/2021-05/unicef-who-2021-affordability-of-wash-services-full.pdf

2. World Health Organization (WHO). Animal Waste, Water Quality and Human Health. Edited by Al Dufour, Jamie Bartram, Robert Bos and Victor Gannon. [date of access 2021 April 15]. Available from: from: https://apps.who.int/iris/handle/10665/75700

3. WHO OECD ILSI/HESI International workshop on risk assessment of combined exposures to multiple chemicals. Series on testing and assessment. 2017;40. [date of access 2021 April 15]. Available from: https://apps.who.int/iris/bitstream/handle/10665/255543/9789241512374-eng.pdf

4. Progress on household drinking water, sanitation and hygiene 2000-2020: Five years into the SDGs. Geneva: World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF), 2021. [date of access 2021 April 15]. Available from: https://washdata.org/sites/default/files/2021-06/jmp-2021-wash-households-LAUNCH-VERSION.pdf

5. WHO (2006). Guidelines for Drinking-water Quality, 1st Addendum to the 3rd ed., Volume 1: Recommendations, World Health Organization, Geneva. [date of access 2021 April 15]. Available from: https://apps.who.int/iris/bitstream/handle/10665/43285/9789241546768_eng.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3