Semi-automatic LiDAR point cloud denoising using a connected-component labelling method
Author:
Kaňuk Ján,Šupinský Jozef,Šašak Ján,Hofierka Jaroslav,Wang Yongbo,Zhang Qiuzhao,Sedlák Vladimír,Onačillová Katarína,Gallay Michal
Abstract
The Smart City concept requires new, fast methods for collection of 3-D data representing features of urban landscape. Laser scanning technology (LiDAR - Light Detection and Ranging) enables such approach producing dense 3-D point clouds of millions of points, which, however, contain noise. Therefore, we developed a new approach allowing for a semi-automatic elimination of data noise resulting from motion of objects within the scanned scene such as persons. We used a connected-component labelling method to filter out the noise points from terrestrial laser scanning point clouds. Our approach was based on a step-by-step object classification with a proper parameterisation. In the first step, all points located close to the predicted terrain were selected. In the second step, the points representing the terrain and floor were classified using the surface filter tool implemented in the RiScan Pro software by RIEGL. The rest of points were classified using point cloud clustering via the connected-component labelling method implemented in the CloudCompare software. In the final step, the operator manually decides whether the point cluster represents the noise. The method was applied to the Cathedral of Saint Elizabeth, a sacral object located in the historical centre of the city of Košice in Slovakia during normal operating hours. We managed to capture approximately 80% of the data noise in total. The method provides a better flexibility in surveying overcrowded city locations using the laser scanning technology.
Publisher
Pavol Jozef Safarik University in Kosice
Subject
Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献