Semi-automatic LiDAR point cloud denoising using a connected-component labelling method

Author:

Kaňuk Ján,Šupinský Jozef,Šašak Ján,Hofierka Jaroslav,Wang Yongbo,Zhang Qiuzhao,Sedlák Vladimír,Onačillová Katarína,Gallay Michal

Abstract

The Smart City concept requires new, fast methods for collection of 3-D data representing features of urban landscape. Laser scanning technology (LiDAR - Light Detection and Ranging) enables such approach producing dense 3-D point clouds of millions of points, which, however, contain noise. Therefore, we developed a new approach allowing for a semi-automatic elimination of data noise resulting from motion of objects within the scanned scene such as persons. We used a connected-component labelling method to filter out the noise points from terrestrial laser scanning point clouds. Our approach was based on a step-by-step object classification with a proper parameterisation. In the first step, all points located close to the predicted terrain were selected. In the second step, the points representing the terrain and floor were classified using the surface filter tool implemented in the RiScan Pro software by RIEGL. The rest of points were classified using point cloud clustering via the connected-component labelling method implemented in the CloudCompare software. In the final step, the operator manually decides whether the point cluster represents the noise. The method was applied to the Cathedral of Saint Elizabeth, a sacral object located in the historical centre of the city of Košice in Slovakia during normal operating hours. We managed to capture approximately 80% of the data noise in total. The method provides a better flexibility in surveying overcrowded city locations using the laser scanning technology.

Publisher

Pavol Jozef Safarik University in Kosice

Subject

Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3