On Algebraic and Definable Closures for Theories of Abelian Groups

Author:

,Pavlyuk In. I.ORCID

Abstract

Classifying abelian groups and their elementary theories, a series of characteristics arises that describe certain features of the objects under consideration. Among these characteristics, an important role is played by Szmielew invariants, which define the possibilities of divisibility of elements, orders of elements, dimension of subgroups, and allow describing given abelian groups up to elementary equivalence. Thus, in terms of Szmielew invariants, the syntactic properties of Abelian groups are represented, i.e. properties that depend only on their elementary theories. The work, based on Szmielew invariants, provides a description of the behavior of algebraic and definable closure operators based on two characteristics: degrees of algebraization and the difference between algebraic and definable closures. Thus, possibilities for algebraic and definable closures, adapted to theories of Abelian groups, are studied and described. A theorem on trichotomy for degrees of algebraization is proved: either this degree is minimal, if in the standard models, except for the only two-element group, there are no positively finitely many cyclic and quasi-cyclic parts, or the degree is positive and natural, if in a standard model there are no positively finitely many cyclic and quasi-cyclic parts, except a unique copy of a two-element group and some finite direct sum of finite cyclic parts, and the degree is infinite if the standard model contains unboundedly many nonisomorphic finite cyclic parts or positively finitely many of copies of quasi-finite parts. In addition, a dichotomy of the values of the difference between algebraic closures and definable closures for abelian groups defined by Szmielew invariants for cyclic parts is established. In particular, it is shown that torsion-free abelian groups are quasi-Urbanik.

Publisher

Irkutsk State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3