On Covering of Cylindrical and Conical Surfaces with Equal Balls

Author:

,Lempert A. A.ORCID,Kazakov A. L.ORCID, , ,Nguyen D. M.ORCID,

Abstract

The article concerns the problem of covering the lateral surface of a right circular cylinder or a cone with equal balls. The surface is required to belong to their union, and the balls’ radius is minimal. The centers of the balls must lie on the covered surface. The problem is relevant for mathematics and for applications since it arises in security and communications. We develop heuristic algorithms for covering construction based on a geodesic Voronoi diagram. The construction of a covering is a non-trivial task since the line of intersection of a cylinder or a cone with a sphere is a closed curve of the fourth order. To compare the numerical results with the known ones, we unroll the surface of revolution onto a plane. Another feature is that, we use both Euclidean distance and a special non-Euclidean metric, which can describe the speed of signal propagation in a heterogeneous medium. We also perform a numerical experiment and discuss its results. Meanwhile, it is shown that with a small number of circles covering a planification of the cylindrical surface, their radius is significantly less than for a similar rectangle.

Publisher

Irkutsk State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3