Globally Admissible Inference Rules

Author:

Rimatskiy V. V.,

Abstract

Setting the basic rules of inference is fundamental to logic. The most general variant of possible inference rules are admissible inference rules: in logic 𝐿, a rule of inference is admissible if the set of theorems 𝐿 is closed with respect to this rule. The study of admissible inference rules was stimulated by Friedman’s problem: Is there an algorithm for recognizing the admissibility of an inference rule in intuitionistic logic? For a wide class of non-classical logics the problem of recognizing with respect to the admissibility of inference rules was solved in 1980s. Another way of describing all admissible rules in logic goes back to the problem of A. Kuznetsov (1975): specifying a certain (finite) set of admissible rules, from which all other admissible rules in logic will be derived as consequences, i.e. setting a (finite) basis. It turned out that most basic non-classical logics do not have a finite basis for admissible inference rules. In the early 2000s, for most basic non-classical logics and some tabular logics, the Fridman-Kuznetsov problem was solved by describing an explicit basis for admissible rules. The next stage in the study of admissible inference rules for non-classical logics can be considered the concept of a globally admissible inference rule. Globally admissible rules in the logic 𝐿 are those inference rules that are admissible simultaneously in all (with finite model property) extensions of the given logic. Such rules develop and generalize the concept of an admissible inference rule. The present work is devoted to the study of globally admissible rules of logic 𝑆4. Conditions for global admissibility in the logic 𝑆4 were obtained, a characteristic (universal) model was constructed (checking global admissibility is reduced to checking the truth of a rule on its submodels), a basis was described (all globally admissible rules are derived from it) and an anti-basis (from which all rules not available globally in 𝑆4).

Publisher

Irkutsk State University

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3