Two-dimensional Thermocapillary Fluid Motion in an Open Channel

Author:

Lemeshkova ElenaORCID,

Abstract

The problem of two-dimensional thermocapillary fluid motion in a flat channel is studied. The temperature in the liquid is distributed according to the quadratic law, which is consistent with the velocity field of the Himentz type. At the bottom of the channel, the temperature depends on the time, which allows you to control the movement inside the layer. The Oberbeck-Boussinesq equations are taken as a mathematical model. The resulting initial - boundary value problem is highly nonlinear and inverse with respect to the pressure gradient along the channel. To solve it, a modified Galerkin method was used, where Legendre polynomials were chosen as the basis functions. The expansion coefficients are functions of time for which a system of nonlinear ODES was obtained. As a result of the application of the Runge-Kutta-Felberg method, a solution was found that, with increasing time, tends to solve a stationary problem if the temperature at the bottom of the channel stabilizes.

Publisher

Irkutsk State University

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3