On Periodic Groups Saturated with Finite Frobenius Groups

Author:

Durakov B. E., ,Sozutov A. I.,

Abstract

A group is called weakly conjugate biprimitively finite if each its element of prime order generates a finite subgroup with any of its conjugate elements. A binary finite group is a periodic group in which any two elements generate a finite subgroup. If $\mathfrak{X}$ is some set of finite groups, then the group $G$ saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$, isomorphic to some group from $\mathfrak{X}$. A group $G = F \leftthreetimes H$ is a Frobenius group with kernel $F$ and a complement $H$ if $H \cap H^f = 1$ for all $f \in F^{\#}$ and each element from $G \setminus F$ belongs to a one conjugated to $H$ subgroup of $G$. In the paper we prove that a saturated with finite Frobenius groups periodic weakly conjugate biprimitive finite group with a nontrivial locally finite radical is a Frobenius group. A number of properties of such groups and their quotient groups by a locally finite radical are found. A similar result was obtained for binary finite groups with the indicated conditions. Examples of periodic non locally finite groups with the properties above are given, and a number of questions on combinatorial group theory are raised.

Publisher

Irkutsk State University

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3