Effect of incubation time on transformation rate and chemical forms of phosphorous in calcareous soils along a climotoposequence

Author:

Moazallahi Masomeh,Baghernejad Majid,Naghavi Hormazd

Abstract

Soil phosphorous fertility can be significantly affected by the P transformation rate in soils. The present study was designed to evaluate the application of time-dependent P fertilizer in terms of its availability and chemical forms in 23 soils of a climotoposequence. The collected soil samples were incubated with 200 µg g<sup>-1</sup> P as KH<sub>2</sub>PO<sub>4</sub> for 1, 20, 60, 100, 150, and 200 days at 25 °C and after that, the available and chemical forms of P were determined for each incubation time. A rapid decrease in available P was observed within 20 days after application of P fertilizer. A 200-day application of P led to a decrease in the available P by 15% compared to the one-day application. In addition, the biphasic pattern of transformation rate of available P fitted well to parabolic and power function models. The results of sequential extraction methods showed that in treated and untreated soils, Ca-bound P, residual P, Fe- and Al-bound P were the highest fractions, while the exchangeable form was the lowest. At the end of incubation, on average, only 15% of total P (200 μg g<sup>-1</sup>) remained as exchangeable-P, while this amount was 40.6% and 28.5% at days 1 and 20, respectively. In addition, among all soil characteristics, mineralogical properties showed the most obvious effects on controlling the chemical forms of P over time.

Publisher

Frontiers Media SA

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3