Deep-learning-based prediction of glaucoma conversion in normotensive glaucoma suspects

Author:

Ha AhnulORCID,Sun Sukkyu,Kim Young KookORCID,Jeoung Jin WookORCID,Kim Hee Chan,Park Ki HoORCID

Abstract

Background/aimsTo assess the performance of deep-learning (DL) models for prediction of conversion to normal-tension glaucoma (NTG) in normotensive glaucoma suspect (GS) patients.MethodsDatasets of 12 458 GS eyes were reviewed. Two hundred and ten eyes (105 eyes showing NTG conversion and 105 without conversion), followed up for a minimum of 7 years during which intraocular pressure (IOP) was lower than 21 mm Hg, were included. The features of two fundus images (optic disc photography and red-free retinal nerve fibre layer (RNFL) photography) were extracted by convolutional auto encoder. The extracted features as well as 15 clinical features including age, sex, IOP, spherical equivalent, central corneal thickness, axial length, average circumpapillary RNFL thickness, systolic/diastolic blood pressure and body mass index were used to predict NTG conversion. Prediction was performed using three machine-learning classifiers (ie, XGBoost, Random Forest, Gradient Boosting) with different feature combinations.ResultsAll three algorithms achieved high diagnostic accuracy for NTG conversion prediction. The AUCs ranged from 0.987 (95% CI 0.978 to 1.000; Random Forest trained with both fundus images and clinical features) and 0.994 (95% CI 0.984 to 1.000; XGBoost trained with both fundus images and clinical features). XGBoost showed the best prediction performance for time to NTG conversion (mean squared error, 2.24). The top three important clinical features for time-to-conversion prediction were baseline IOP, diastolic blood pressure and average circumpapillary RNFL thickness.ConclusionDL models, trained with both fundus images and clinical data, showed the potential to predict whether and when normotensive GS patients will show conversion to NTG.

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3