Serum cytokine biosignatures for identification of tuberculosis among HIV-positive inpatients

Author:

Zhang HuihuaORCID,Li LingHua,Liu YanXia,Xiao Wei,Xu RuiYao,Lu MengRu,Hao WenBiao,Gao YuChi,Tang Xiaoping,Dai YouchaoORCID

Abstract

BackgroundSerum cytokines correlate with tuberculosis (TB) progression and are predictors of TB recurrence in people living with HIV. We investigated whether serum cytokine biosignatures could diagnose TB among HIV-positive inpatients.MethodsWe recruited HIV-positive inpatients with symptoms of TB and measured serum levels of inflammation biomarkers including IL-2, IL-4, IL-6, IL-10, tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). We then built and tested our TB prediction model.Results236 HIV-positive inpatients were enrolled in the first cohort and all the inflammation biomarkers were significantly higher in participants with microbiologically confirmed TB than those without TB. A binary support vector machine (SVM) model was built, incorporating the data of four biomarkers (IL-6, IL-10, TNF-α and IFN-γ). Efficacy of the SVM model was assessed in training (n=189) and validation (n=47) sets with area under the curve (AUC) of 0.92 (95% CI 0.88 to 0.96) and 0.85 (95% CI 0.72 to 0.97), respectively. In an independent test set (n=110), the SVM model yielded an AUC of 0.85 (95% CI 0.76 to 0.94) with 78% (95% CI 68% to 87%) specificity and 85% (95% CI 66% to 96%) sensitivity. Moreover, the SVM model outperformed interferon-gamma release assay (IGRA) among advanced HIV-positive inpatients irrespective of CD4+T-cell counts, which may be an alternative approach for identifyingMycobacterium tuberculosisinfection among HIV-positive inpatients with negative IGRA.ConclusionsThe four-cytokine biosignature model successfully identified TB among HIV-positive inpatients. This diagnostic model may be an alternative approach to diagnose TB in advanced HIV-positive inpatients with low CD4+T-cell counts.

Funder

Science and Technology Project of Guangdong Province

Science and Technology Project of Guangzhou

Publisher

BMJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3