Performance of the Innova SARS-CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot: population based cohort study

Author:

García-Fiñana MartaORCID,Hughes David M,Cheyne Christopher P,Burnside Girvan,Stockbridge Mark,Fowler Tom A,Fowler Veronica L,Wilcox Mark H,Semple Malcolm G,Buchan Iain

Abstract

Abstract Objective To assess the performance of the SARS-CoV-2 antigen rapid lateral flow test (LFT) versus polymerase chain reaction testing in the asymptomatic general population attending testing centres. Design Observational cohort study. Setting Community LFT pilot at covid-19 testing sites in Liverpool, UK. Participants 5869 asymptomatic adults (≥18 years) voluntarily attending one of 48 testing sites during 6-29 November 2020. Interventions Participants were tested using both an Innova LFT and a quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) test based on supervised self-administered swabbing at testing sites. Main outcome measures Sensitivity, specificity, and predictive values of LFT compared with RT-qPCR in an epidemic steady state of covid-19 among adults with no classic symptoms of the disease. Results Of 5869 test results, 22 (0.4%) LFT results and 343 (5.8%) RT-qPCR results were void (that is, when the control line fails to appear within 30 minutes). Excluding the void results, the LFT versus RT-qPCR showed a sensitivity of 40.0% (95% confidence interval 28.5% to 52.4%; 28/70), specificity of 99.9% (99.8% to 99.99%; 5431/5434), positive predictive value of 90.3% (74.2% to 98.0%; 28/31), and negative predictive value of 99.2% (99.0% to 99.4%; 5431/5473). When the void samples were assumed to be negative, a sensitivity was observed for LFT of 37.8% (26.8% to 49.9%; 28/74), specificity of 99.6% (99.4% to 99.8%; 5431/5452), positive predictive value of 84.8% (68.1% to 94.9%; 28/33), and negative predictive value of 93.4% (92.7% to 94.0%; 5431/5814). The sensitivity in participants with an RT-qPCR cycle threshold (Ct) of <18.3 (approximate viral loads >10 6 RNA copies/mL) was 90.9% (58.7% to 99.8%; 10/11), a Ct of <24.4 (>10 4 RNA copies/mL) was 69.4% (51.9% to 83.7%; 25/36), and a Ct of >24.4 (<10 4 RNA copies/mL) was 9.7% (1.9% to 23.7%; 3/34). LFT is likely to detect at least three fifths and at most 998 in every 1000 people with a positive RT-qPCR test result with high viral load. Conclusions The Innova LFT can be useful for identifying infections among adults who report no symptoms of covid-19, particularly those with high viral load who are more likely to infect others. The number of asymptomatic adults with lower Ct (indicating higher viral load) missed by LFT, although small, should be considered when using single LFT in high consequence settings. Clear and accurate communication with the public about how to interpret test results is important, given the chance of missing some cases, even at high viral loads. Further research is needed to understand how infectiousness is reflected in the viral antigen shedding detected by LFT versus the viral loads approximated by RT-qPCR.

Publisher

BMJ

Subject

General Engineering

Reference33 articles.

1. COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing

2. Oxford University and PHE Porton Down. University of Oxford SARS-CoV-2 test development and validation cell. Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell: Rapid evaluation of Lateral Flow Viral Antigen detection devices (LFDs) for mass community testing; 2020. www.ox.ac.uk/sites/files/oxford/media_wysiwyg/UK%20evaluation_PHE%20Porton%20Down%20%20University%20of%20Oxford_final.pdf

3. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection

4. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis

5. Rethinking Covid-19 Test Sensitivity — A Strategy for Containment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3